4th RD50 - Workshop on

Radiation hard semiconductor devices for very high luminosity colliders

CERN, 5-7 May, 2004

Effect of fluence on defect structure of proton-irradiated high-resistivity silicon

P. Kaminski ⁽¹⁾, R. Kozlowski ⁽¹⁾, M. Pawlowski ⁽¹⁾, E. Nossarzewska-Orlowska ⁽¹⁾, J. Harkonen ⁽²⁾, E. Tuovinen ⁽²⁾

- ⁽¹⁾ Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warszawa, Poland
- (2) Helsinki Institute of Physics, P.O. Box 64 (Gustaf Hällströmin katu 2) 00014 University of Helsinki, Finland
 - Motivation
 - Intelligent experimental system for studies of defect centres by PITS technique
 - Proton irradiated samples
 - Effect of fluence on defect structure of high-resistivity Czochralski-grown Si
 - Effect of fluence on defect structure of high-resistivity float-zone Si
 - Conclusions

Motivation

- Fast proton damage in bulk silicon is still not fully understood.
- DLTS samples: n ≥ 1x10¹⁴ cm⁻³, fluences ~5 x10¹⁰ 3 x10¹³ p/cm², annealed at 40 - 400 °C.
- Using a better resolution of experimental system new radiation defect centres can be observed.
- Studies of defect centres in high-resistivity Si-Cz and Si-FZ (net donor concentration below 5x10¹² cm⁻³) after proton irradiation with higher fluences (1x10¹³ - 1x10¹⁵ p/cm²) are of great interest.

Intelligent experimental system for characterisation of defect centres in high-resistivity semiconductors

Schematic illustration of the intelligent experimental setup for characterisation of defect centres in high-resistivity semiconductors

10- MeV proton irradiated samples

A. High-resistivity bulk Si grown by the Czochralski method in magnetic field, Okmetic

Sample	Fluence (p/cm ²)	n at 300 K (cm⁻³)	Resistivity at 300 K (Ωcm)	Hall mobility at 300 K (cm²/Vs)	Туре
C00	non- irradiated	3.6x10 ¹²	1.08x10 ³	1585	n
C09	1.8x10 ¹³	5.8X10 ¹⁰	1.1x10 ⁵	959	n
C12	1.2x10 ¹⁴	6.0x10 ¹⁰	9.6x10 ⁴	1094	n

B. High-resistivity FZ Si, Topsil

Sample	Fluence (p/cm ²)	n at 300 K (cm⁻³)	Resistivity at 300 K (Ωcm)	Hall mobility at 300 K (cm ² /Vs)	Туре
Т00	non- irradiated	1.5x10 ¹²	2.8x10 ³	1600	n
T09	1.8x10 ¹³	5.8X10 ¹⁰	1.1x10 ⁵	967	n
T12	1.2x10 ¹⁴	4.4x10 ¹⁰	1.7x10 ⁵	848	n

Effect of proton fluence on defect structure of Czochralski-grown Si

Experimental spectral fringes obtained as a result of the correlation procedure for defect centres detected in Cz-Si irradiated with fluences of 1.8x10¹³ p/cm² (a) and 1.2x10¹⁴ p/cm² (b). The solid lines illustrate the temperature dependencies of emission rate determined by means of advanced computational analysis for detected defect centres.

Effect of proton fluence on defect structure of Czochralski-grown Si

Comparison of 1-D HRPITS spectra obtained as a result of the correlation procedure for high-resistivity Cz-Si samples after 10-MeV proton irradiation with fluences of 1.8x10¹³ and 1.2x10¹⁴ p/cm².

Summary of the properties and concentrations of defect centres detected by the HRPITS method in high-resistivity Cz-Si after 10-MeV proton irradiation with fluences of 1.8x10¹³ and 1.2x10¹⁴ p/cm²

Trap	Ea	A [s ⁻¹ K ⁻²]	$\sigma_e \text{ or } \sigma_h$ [cm ²]	Trap concentration N_T [cm ⁻³]		Identification/
label	[meV]			$\Phi = 1.8 \times 10^{13}$ [p/cm ²]	$\Phi = 1.2 \times 10^{14}$ [p/cm ²]	Remarks
TC1	15	2.0x10 ⁴	1.9x10 ⁻¹⁷	$1.9 \mathrm{x} 10^{14}$	2.3×10^{14}	shallow donor ; e
TC2	25	2.5x10 ⁴	2.4×10^{-17}	3.2×10^{14}	$4.0 mmx 10^{14}$	shallow donor ; e
TC3	35	2.7×10^4	2.5×10^{-17}	$4.5 ext{x} 10^{14}$	not observed	shallow donor ; e
TC4	45	1.5x10 ⁴	1.4×10^{-17}	$7.4 \mathrm{x} 10^{14}$	1.0x10 ¹⁵	shallow donor ; e
TC5	125	3.5x10 ⁶	3.3×10^{-15}	not observed	2.1x10 ¹⁵	$C_{i}^{-0}; e$
TC6	135	3.8x10 ⁴	-	1.2×10^{15}	2.2×10^{15}	TX3, H-related ?
TC7	165	2.0×10^{6}	1.2×10^{-15}	$1.0 \mathrm{x} 10^{15}$	2.1×10^{15}	$VO_i^{-/0} + C_iC_s(A)^{-/0}; e$
TC8	185	4.0×10^7	1.5×10^{-14}	not observed	2.6×10^{15}	$V_2^{+/0}$; <i>h</i>
TC9	230	4.0×10^{6}	3.8×10^{-15}	1.4×10^{15}	2.9×10^{15}	$V_2^{2-/-}; e$
TC10	250	1.0×10^{6}	3.8×10^{-16}	1.6×10^{15}	1.8×10^{15}	VOH ^{+/0} ; <i>h</i>
TC11	285	9.0x10 ⁵	3.4×10^{-16}	1.9×10^{15}	1.9x10 ¹⁵	H-related; <i>h</i>
TC12	315	6.0x10 ⁵	6.1x10 ⁻¹⁶	1.2×10^{15}	1.6x10 ¹⁵	E3 (H-related), VOH ⁻ ^{/0} ; <i>e</i>
TC13	340	5.0x10 ⁶	1.9×10^{-15}	1.8×10^{15}	1.4×10^{15}	$C_i O_i^{+/0}$ or $C_i O_i V$; <i>h</i>
TC14	430	1.0×10^7	9.4×10^{-15}	1.2×10^{15}	9.6x10 ¹⁴	$V_2^{-/0}; e$

Effect of proton fluence on defect structure of FZ Si

Experimental spectral fringes obtained as a result of the correlation procedure for defect centres detected in FZ-Si irradiated with fluences of 1.8x10¹³ p/cm² (a) and 1.2x10¹⁴ p/cm² (b). The solid lines illustrate the temperature dependencies of emission rate determined by means of advanced computational analysis for detected defect centres.

Effect of proton fluence on defect structure of FZ Si

Comparison of 1-D HRPITS spectra obtained as a result of the correlation procedure for high-resistivity FZ-Si samples after 10-MeV proton irradiation with fluences of 1.8x10¹³ and 1.2x10¹⁴ p/cm².

Summary of the properties and concentrations of defect centres detected by the HRPITS method in high-resistivity FZ-Si after 10-MeV proton irradiation with fluences of 1.8x10¹³ and 1.2x10¹⁴ p/cm²

-						
	E_a [meV]	$A [s^{-1}K^{-2}]$	σ_e or σ_h [cm ²]	Trap concentration N_T [cm ⁻³]		Identification/
Trap label						
				$\Phi = 1.8 \times 10^{13}$ [p/cm ²]	$\Phi = 1.2 \times 10^{14}$ [p/cm ²]	Remarks
TF1	17	5.2×10^4	4.9x10 ⁻¹⁷	$1.4 \mathrm{x} 10^{14}$	2.1x10 ¹⁴	shallow donor ; e
TF2	40	1.2×10^5	1.1x10 ⁻¹⁶	$1.7 \mathrm{x} 10^{14}$	4.6×10^{14}	shallow donor ; e
TF3	100	7.2×10^{6}	2.7x10 ⁻¹⁵	not observed	5.3x10 ¹⁴	$C_iC_s(A)^{+/0}$; h
TF4	127	2.2×10^{6}	2.1x10 ⁻¹⁵	$1.1 x 10^{14}$	9.0x10 ¹⁴	C _i -⁄0 ; <i>e</i>
TF5	135	1.3x10 ⁸	-	not observed	2.3x10 ¹⁵	self-interstitial agglomerate (I)
TF6	170	3.5×10^7	3.3x10 ⁻¹⁴	1.1×10^{15}	3.4×10^{15}	$VO_i^{-/0} + C_iC_s(A)^{-/0}; e$
TF7	201	1.3x10 ⁸	4.9x10 ⁻¹⁴	3.8x10 ¹⁵	3.1x10 ¹⁵	$V_2^{+/0}$; <i>h</i>
TF8	210	4.8×10^{6}	4.5×10^{-15}	2.9x10 ¹⁵	2.5x10 ¹⁵	Е (115) ; е
TF9	227	2.7×10^5	2.5x10 ⁻¹⁶	1.2×10^{15}	2.7x10 ¹⁵	$V_2^{2-/-}; e$
TF10	255	3.4×10^5	1.3x10 ⁻¹⁶	not observed	3.6x10 ¹⁵	$\operatorname{VOH}^{+/0}; h$
TF11	262	5.2×10^7	2.0x10 ⁻¹⁴	8.6x10 ¹⁴	2.9x10 ¹⁵	${ m C_i H^{+/0}}$; h
TF12	360	1.0x10 ⁶	3.8x10 ⁻¹⁶	3.3×10^{15}	2.6x10 ¹⁵	$C_i O_i^{+/0}$ or $C_i O_i V$; <i>h</i>
TF13	470	1.9x10 ⁷	1.8x10 ⁻¹⁴	3.5×10^{14}	5.6x10 ¹⁵	$V_2^{-/0}; e$
TF14	501	1.3x10 ⁸	4.9×10^{-14}	not observed	3.2×10^{15}	H-related complex; <i>h</i>
TF15	574	2.0×10^7	7.6x10 ⁻¹⁵	not observed	1.8x10 ¹⁵	I-centre $(V_2O)^{0/-}$; h
TF16	597	8.7x10 ⁸	8.2x10 ⁻¹³	not observed	1.5x10 ¹⁵	<i>E (325),</i> multivacancy, N, or H - related ; <i>e</i>

Conclusions (I)

- HRPITS technique with implementation of computational intelligence has been employed to studying the effect of fluence on defect structure of 10-MeV proton irradiated FZ and Cz silicon with starting net donor concentrations of 1.5x10¹² and 3.6x10¹² cm⁻³, respectively.
- The irradiation of Cz-Si with fluences of 1.8x10¹³ and 1.2x10¹⁴ p/cm² resulted in the formation of 12 and 14 defect centres, respectively, with activation energies ranging from 15 to 430 meV.
- For the lower fluence the predominant defects in Cz-Si were found to be an H-related complex (285 meV) and C_iO_i^{+/0} (340 meV).
- For the higher fluence the predominant defects in Cz-Si were found to be divacancies V₂^{2-/-} (230 meV) and V₂^{+/0} (185 meV).

Conclusions (II)

- The irradiation of FZ-Si with fluences of 1.8x10¹³ and 1.2x10¹⁴ p/cm² resulted in the formation of 10 radiation defects with activation energies ranging from 17 to 470 meV and 16 defects with activation energies in the range of 17-597 meV, respectively.
- For the lower fluence the predominant defects in FZ-Si were found to be the divacancy $V_2^{+/0}$ (185 meV) and $C_iO_i^{+/0}$ (340 meV).
- For the higher fluence the predominant defects in FZ-Si were found to be the divacancy $V_2^{-/0}$ (470 meV) and VOH^{+/0} complex (255 meV).
- Comparison of the defect structure of Cz-Si and FZ-Si indicates that the defects occurring in the both materials after the irradiation with the lower fluence are: $VO_i^{-/0}+C_iC_s(A)^{-/0}$, $V_2^{2^{-/-}}$, $C_iO_i^{+/0}$ and $V_2^{-/0}$. For the higher fluence apart from these defects the common defects are: $C_i^{-/0}$, $V_2^{+/0}$, $VOH^{+/0}$.
- The irradiation of high-resistivity FZ-Si with a fluence of 1.2x10¹⁴ p/cm² results in the formation of midgap centres with activation energies 501, 574 and 597 meV attributed to an H-related complex, V₂O^{0/-} and an unidentified defect, respectively.

Acknowledgement

This study was carried out within the framework of the RD 50 project with financial support of the Polish Committee for Scientific Research.